采用时空上下文的抗遮挡实时目标跟踪
针对目标跟踪算法在光照变化、背景干扰、目标形变及遮挡时出现的跟踪稳定性下降甚至失败的问题,提出了一种采用时空上下文的抗遮挡实时目标跟踪算法.首先,在时空上下文模型框架下采用自适应降维的颜色特征构建目标外观模型,提高算法在复杂场景中对目标的辨别能力;然后,联合置信图响应的峰值和峰值旁瓣比对目标跟踪的状态进行评估;接着,利用目标模板之间相关系数的变化进一步判断目标是否被严重遮挡;最后,当目标跟踪出现波动时,降低目标模型更新速度,并通过Kalman滤波修正目标位置,当目标被严重遮挡时,则根据Kalman滤波预测目标位置,同时停止更新目标模型,在脱离遮挡后重新捕获目标并进行跟踪.选取了36组具有多种挑战因素的彩色视频序列测试算法的跟踪性能,并与其他表现优异的目标跟踪算法进行了对比分析.实验结果表明,所提算法具有较强的抗遮挡能力,并且在光照变化、背景干扰和目标形变等不利因素影响下仍具有较好的跟踪鲁棒性,同时能够满足目标跟踪的实时性要求.
目标跟踪、时空上下文、目标跟踪置信度、遮挡判别、Kalman滤波
50
TP391.4(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金
2021-03-11(万方平台首次上网日期,不代表论文的发表时间)
共11页
325-335