期刊专题

10.3788/IRLA20200221

基于全光衍射深度神经网络的矿物拉曼光谱识别方法

引用
提出了一种基于全光衍射神经网络的矿物拉曼光谱识别方法.首先,分析矿物拉曼光谱的数据结构特征,对比分析了传统神经网络与光学衍射神经网络的异同,根据预处理后的数据构建光学衍射神经网络;然后,采用交叉熵损失函数和Adam算法对光学衍射神经网络进行训练,得到优化的网络参数;最后,在仿真条件下,验证和分析不同栅格高度精度对矿物识别正确率的影响,给出了不同栅格高度精度对应的网络正确率及正确率损失.该方法在RRUFF矿物拉曼光谱数据库上的测试结果显示:五类矿物识别正确率为94.2%,证明利用光学衍射神经网络进行拉曼光谱分类具有可行性,为光学衍射神经网络的应用提供参考;栅格高度在6 bit精度条件下,五类矿物正确率为93.6%,证明栅格高度离散化能够在保证网络正确率的同时极大降低光栅制作难度,为光栅制备提供理论支撑.

全光衍射神经网络、矿物拉曼光谱、深度学习

49

TP389.1(计算技术、计算机技术)

长江学者和创新团队发展计划;国家自然科学基金

2020-12-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

160-167

相关文献
评论
暂无封面信息
查看本期封面目录

红外与激光工程

1007-2276

12-1261/TN

49

2020,49(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn