一种改进的Capsule及其在SAR图像目标识别中的应用
为了解决Capsule网络随着输入图像增大计算量和参数数量急剧增加的问题,对Capsule网络进行了改进并将其用于SAR自动目标识别(SAR-ATR)中.基于大脑视觉皮层以层级结构以及柱状形式处理信息的机制,提出了完全实例化的思想,并运用类脑计算对Capsule网络进行了改进.具体方法是:使用多个卷积层实现层级处理,同时使用了较少的卷积核,但每一层使用的卷积核数量随着层级加深逐渐增加,使得提取的特征更加趋于抽象化;在PrimaryCaps层中,Capsule向量由最后一层卷积层输出的所有特征图构成,使得Capsule单元包含目标局部或整体的全部特征,以实现目标的完全实例化.在SAR-ATR上,将改进的Capsule网络与原Capsule网络、传统目标识别算法和基于经典卷积神经网络的目标识别算法进行对比实验.实验结果表明,改进的Capsule网络训练参数和计算量大大减少,并且训练速度得到很大提升,在SAR图像数据集上的识别准确率较Capsule网络和前两类方法分别提高了0.37和1.96~8.96个百分点.
目标识别、Capsule网络、完全实例化、类脑计算、卷积神经网络
49
TP391(计算技术、计算机技术)
2020-06-30(万方平台首次上网日期,不代表论文的发表时间)
共8页
195-202