期刊专题

10.3969/j.issn.1007-2276.2010.05.037

Boosting优化决策树的带钢表面缺陷识别技术

引用
基于图像信息的缺陷识别技术是带钢表面缺陷检测系统中的关健技术之一.通过采用单一的分类技术或者一步到位的创建分类器,对复杂带钢表面缺陷图像进行识别很难达到理想的效果.提出了用Boosting算法结合SLIQ决策树建立组合分类器来识别带钢表面缺陷的方法.Boosting算法通过适应性权重技术和带权重的投票方法,建立并组合多个功能互补的分类器,组合分类器通过优势互补的方法有效地提高单个分类器的性能;而SLIQ决策树算法的数据预排序和广度优先技术对大规模数据分类具有速度优势,适合于作为单个分类器的弱学习算法.对实际带钢表面缺陷数据集进行测试,Boosting优化SLIQ决策树的组合分类器对缺陷识别的准确率达到了90%以上.

图像识别、带钢、表面缺陷、Boosting

39

TP391.1(计算技术、计算机技术)

国家自然科学基金资助项目60736010

2011-03-03(万方平台首次上网日期,不代表论文的发表时间)

共5页

954-958

暂无封面信息
查看本期封面目录

红外与激光工程

1007-2276

12-1261/TN

39

2010,39(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn