10.3969/j.issn.1007-2276.2008.05.035
基于正则化Adaboost的红外目标识别
对于高维特征空间的分类,Adaboost算法是一种有效的分类算法.然而,如果把Adaboost算法直接运用到红外目标的识别,就会面临高噪声下的Adaboost过拟合问题.采用正则化后的Adaboost算法,即AdaboostKL算法作为分类算法的学习模型,以NaiveBayes作为弱学习器,提出了基于正则化Adaboost的红外目标识别算法.正则化的目的是为避免在红外图像特征高噪声下分类器的过拟合,改善了在高噪声数据下目标识别的可靠性.在求取Adaboost的权重分布时,采用的是熵正则化的方法.通过实验,验证了此算法,则即使面对高噪声的红外数据,也能获得较好的识别效果.
红外目标识别、Adaboost、正则化
37
TP391(计算技术、计算机技术)
2008-12-23(万方平台首次上网日期,不代表论文的发表时间)
共4页
897-900