期刊专题

10.3969/j.issn.1009-8518.2014.06.013

基于GPU的高光谱遥感主成分分析并行优化

引用
主成分分析(principal component analysis, PCA)是高光谱遥感图像特征提取的重要方法。为了在保证精度的同时,提高高光谱遥感PCA算法的计算效率,文章提出一种基于图形处理器(graphic processing unit,GPU)+中央处理器(central processing unit,CPU)异构系统的PCA并行优化方法。该方法利用GPU的并行计算能力实现PCA中复杂的协方差矩阵计算与维数缩减过程,优化了像元去均值的计算流程;解决了GPU内核计算像元累加和非合并访问问题;利用共享内存机制,提高了访存效率。此外,该方法采用改进的Jacobi快速迭代法在CPU中进行特征分解,保证了算法的精度。实验结果表明,该方法在保证精度的同时能够有效提高计算效率,在Quadro600平台上的加速比达到141倍,满足了高光谱遥感图像实时应用的需求。

高光谱遥感、主成分分析方法、处理器异构系统、并行优化

TP751.1(遥感技术)

国家自然科学基金61101194;江苏省自然科学基金BK2011701;江苏省“六大人才高峰”项目WLW-011;高等学校博士学科点专项科研基金资助项目20113219120024;CAST创新基金项目CAST201227;中国地质调查局工作项目1212011120227

2015-01-19(万方平台首次上网日期,不代表论文的发表时间)

共8页

99-106

相关文献
评论
暂无封面信息
查看本期封面目录

航天返回与遥感

1009-8518

11-4532/V

2014,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn