期刊专题

10.7671/j.issn.1001-411X.202006013

基于循环残差注意力的群养生猪实例分割

引用
[目的]在群养环境下,实现生猪粘连、杂物遮挡等不同条件下生猪个体的高精度分割.[方法]对真实养殖场景下的8栏日龄20~105 d共45头群养生猪进行研究,以移动相机拍摄图像为数据源,并执行改变亮度、加入高斯噪声等数据增强操作获取标注图片3834张.探究基于2个骨干网络ResNet50、ResNet101与2个任务网络Mask R-CNN、Cascade mask R-CNN交叉结合的多种模型,并将循环残差注意力(RRA)思想引入2个任务网络模型中,在不显著增加计算量的前提下提升模型特征提取能力、提高分割精度.[结果]选用Mask R-CNN-ResNet50比Cascade mask R-CNN-ResNet50在AP0.5、AP0.75、AP0.5-0.95和AP0.5-0.95-large指标上分别提升4.3%、3.5%、2.2%和2.2%;加入不同数量的RRA模块以探究其对各个任务模型预测性能影响,试验表明加入2个RRA模块后对各个任务模型的提升效果最为明显.[结论]加入2个RRA模块的Mask R-CNN-ResNet50模型可以更精确、有效地对不同场景群养生猪进行分割,为后续生猪身份识别与行为分析提供模型支撑.

循环残差注意力、实例分割、图像处理、Mask R-CNN、Cascade mask R-CNN

41

S828(家畜)

国家自然科学基金;山西农业大学青年科技创新基金;山西农业大学科技创新基金

2020-12-15(万方平台首次上网日期,不代表论文的发表时间)

共10页

169-178

相关文献
评论
暂无封面信息
查看本期封面目录

华南农业大学学报

1001-411X

44-1110/S

41

2020,41(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn