期刊专题

10.3969/j.issn.1671-119X.2021.01.008

基于热成像技术和深度学习的煤矸石识别方法

引用
传统的煤矸石图像识别方法存在特征提取困难、泛化能力弱等问题,采用可见光方式进行煤矸石图像采集又容易受光照、粉尘等环境因素的影响,本文提出一种基于热成像技术和深度学习算法的煤矸石图像识别方法,利用热成像技术进行煤矸石图像采集,分别采用AlexNet、LeNet、ResNet_50这三个卷积神经网络构建煤矸石图像识别模型.根据总损失、识别准确率、训练速度进行模型性能比较,选择识别效果最好的模型,与两个可见光煤矸石图像进行对比实验.实验结果表明利用热成像技术能显著提升煤和矸石图像的差异性,采用热成像技术构建煤矸石数据集,结合AlexNet卷积神经网络训练的煤矸石识别模型,具有良好的识别效果.测试集识别准确率为97.88%.相对于利用传统的可见光成像技术,识别准确率有显著提升.

热成像、深度学习、煤矸石识别、AlexNet卷积神经网络模型

31

TP391.41(计算技术、计算机技术)

国家自然科学基金联合基金;国家自然科学基金青年基金;矿山职工全过程智能健康管理关键技术研究及应用示范

2021-04-01(万方平台首次上网日期,不代表论文的发表时间)

共5页

48-52

暂无封面信息
查看本期封面目录

湖南工程学院学报(自然科学版)

1671-119X

43-1356/N

31

2021,31(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn