期刊专题

一种新的动态聚类算法在高职就业分析中的应用研究

引用
为解决常用于就业数据信息分析的K-means算法中初始化聚类中心敏感和容易陷入局部最优值问题,提出了一种新的动态聚类算法.该算法首先利用最近邻聚类法获得初始聚类中心,然后利用小类对合并条件进行聚类合并,从而获得更优的聚类结果.以多个高职院校近几年的就业数据为样本信息,在数据预处理的基础上,运用提出的聚类方法进行了聚类实验分析,并挖掘出与就业质量相关的因素.最后的实验结果表明,文中提出的聚类方法聚类划分效果更优.

数据挖掘、聚类、就业数据分析

25

TP391(计算技术、计算机技术)

安徽高校省级自然科学研究项目kj2013z090

2015-07-02(万方平台首次上网日期,不代表论文的发表时间)

共4页

47-50

暂无封面信息
查看本期封面目录

湖南工程学院学报(自然科学版)

1671-119X

43-1356/N

25

2015,25(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn