期刊专题

一种基于改进型RBF神经网络的非线性时间序列预测模型

引用
RBF神经网络具有收敛速度缓慢、全局搜索能力差等缺点,提出了一种基于遗传算法的RBF神经网络,经过自适应遗传算子参数优化,提高了RBF神经网络模型的预测精度,实现了非线性时间序列的预测.仿真实验结果表明,基于遗传算法的RBF网络预测模型非常适合非线性时间序列的预测,是可行的、精准的、有效的.

时间序列预测模型、RBF神经网络、遗传算法

25

O244(计算数学)

2015-04-15(万方平台首次上网日期,不代表论文的发表时间)

共4页

41-43,47

暂无封面信息
查看本期封面目录

湖南工程学院学报(自然科学版)

1671-119X

43-1356/N

25

2015,25(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn