期刊专题

10.3969/j.issn.1671-119X.2007.04.013

基于RBF网络的金融时间序列预测

引用
RBF网络是一种新颖有效的前向型神经网络,它通过非线性基函数的线性组合实现从输入空间RN到输出空间RM的非线性转换,特别适合于非线性时间序列如股票市场等金融系统的预测.本文以中集集团的实际收盘价作为预测对象,提出基于RBF网络的个股价格预测模型,仿真实验表明,该模型对于个股价格的短期预测是可行有效的.

RBF、金融、时间序列、预测

17

TP183(自动化基础理论)

2008-03-17(万方平台首次上网日期,不代表论文的发表时间)

共3页

46-48

相关文献
评论
暂无封面信息
查看本期封面目录

湖南工程学院学报(自然科学版)

1671-119X

43-1356/N

17

2007,17(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn