10.3969/j.issn.1002-0640.2024.07.010
小样本下基于CNN-GRU网络的弹丸落点预测
为充分挖掘弹丸径向速度在时空上的规律,提高弹丸落点预测精度,提出了一种基于卷积神经网络结合门控循环单元的弹丸落点预测方法.分别利用卷积神经网络(CNN)和门控循环单元(GRU)网络对弹丸的径向速度在时间和空间上的强相关性特征进行提取,学习弹丸高度复杂的非线性飞行轨迹,构建弹丸落点预测模型.通过某型炮弹径向速度数据作为训练集和测试集进行弹丸落点预测,并与MLP、LSTM和CNN-LSTM时序预测方法进行比较.实验结果表明,CNN-GRU预测模型能够有效提取径向速度序列中的时空间信息,学习出弹丸相对雷达的位置,相比其他模型具有预测精度高、收敛速度快且稳定性好的优势.
径向速度、落点预测、卷积神经网络、门控循环单元
49
TJ06(一般性问题)
2024-09-04(万方平台首次上网日期,不代表论文的发表时间)
共6页
64-69