10.3969/j.issn.1002-0640.2021.09.027
改进的YOLOV3算法在小目标检测中的研究与应用
战场目标的图像检测与识别对于战场监视、侦察、毁伤状态评估和火控系统研究等具有重要作用.以坦克装甲目标为研究对象,选用识别精度高、速度快的YOLOV3为基础目标检测模型,针对复杂战场环境中获取图像目标特征信息少的问题,引入多尺度特征增强结构的方法对YOLOV3模型进行改进,通过丰富特征图多样性的方式,提高模型性能.在坦克数据集上的实验结果表明,改进后的算法对于复杂战场环境下的小目标特征具有更强的敏感性,较大程度上增强了模型的识别精度.
坦克装甲目标;小目标检测;YOLOV3算法;多尺度特征增强
46
TJ01;TP391(一般性问题)
辽宁省自然科学基金资助项目2020-KF-23-06
2021-11-26(万方平台首次上网日期,不代表论文的发表时间)
共6页
162-167