期刊专题

10.7527/S1000-6893.2022.27416

基于强化学习的禁飞区绕飞智能制导技术

引用
人工智能(AI)的快速发展为飞行器制导技术的研究提供新的技术途径.本文针对高速飞行器面临不确定禁飞区的绕飞问题,提出"预测校正制导—基于监督学习预训练倾侧角制导模型—基于强化学习进一步升级倾侧角制导模型"逐级递进的禁飞区绕飞智能制导研究框架:一是基于传统预测校正制导生成大量禁飞区绕飞样本轨迹,并基于监督学习方法对倾侧角制导模型进行预训练;二是进一步采用强化学习中近端策略优化算法(PPO)升级倾侧角制导模型,通过飞行器与带有不确定禁飞区环境的大量交互探索,并设置有效的奖励引导,充分挖掘高升阻比飞行器强大的横向机动能力,摆脱传统预测校正制导方法对倾侧角解空间的约束,期望产生更优的绕飞策略.通过与传统预测校正制导和基于监督学习的智能制导的对比分析,验证了基于强化学习的禁飞区绕飞智能制导技术能够充分发挥飞行器的宽域飞行优势,满足未来飞行器智能决策系统对不确定绕飞场景的适应性需求.

智能制导、禁飞区绕飞、强化学习、PPO算法、监督学习

44

V448.235(航天仪表、航天器设备、航天器制导与控制)

2023-07-19(万方平台首次上网日期,不代表论文的发表时间)

共13页

235-247

相关文献
评论
暂无封面信息
查看本期封面目录

航空学报

1000-6893

11-1929/V

44

2023,44(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn