期刊专题

基于深度图推理的卫星背板部件检测方法

引用
在轨加注是一种典型的在轨服务操作,它对于降低空间运输成本和任务风险起着重要的作用,视觉感知系统可以感知操作任务周围环境并提供给控制系统.目前在轨加注依赖于人,在人员监控下完成或通过遥操作完成,缺乏自主性.本文围绕未来高自主性的基于深度强化学习的在轨加注方法,对基于深度学习的视觉感知方法展开了研究,针对基于深度学习的方法对相似实例的检测存在精确率低、对光照变化敏感等缺点,提出了基于深度图推理的卫星背板部件检测方法.提出的方法可以有效地检测复杂形状的目标,不依赖于手工设计的特征;提高了复杂光照环境下部件的检测正确率;可以有效区分外形相似的不同部件;其有效性在数学仿真和物理仿真中均得到了验证.

在轨加注;视觉感知;复杂光照;相似实例;深度学习;知识图谱

42

V11(航空、航天的发展与空间探索)

国家自然科学基金U20B2054

2021-12-03(万方平台首次上网日期,不代表论文的发表时间)

共13页

270-282

相关文献
评论
暂无封面信息
查看本期封面目录

航空学报

1000-6893

11-1929/V

42

2021,42(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn