基于改进DQN的复合模式在轨服务资源分配
针对开展在轨服务前的资源分配非线性多目标优化问题,构建复合服务模式下的在轨资源分配模型,基于对DQN (Deep Q-Network)方法的收敛性和稳定性改进,提出了一种在轨服务资源分配方法.该方法能够应对同时包含“一对多”“多对一”的复合服务模式,并在满足预期成功率的前提下优先分配重要服务对象,兼顾资源分配综合效益和总体能耗效率,达到了以期望成功率、较少资源投入尽快完成任务的综合目标.仿真实验表明,改进DQN方法能够在任务执行前依据服务对象重要程度自主分配航天器资源,收敛速度快、训练误差低,在分配效益和总体能耗的优化方面具有明显的比较优势.
在轨服务、整数规划、资源分配、深度强化学习、神经网络
41
V412.4;V448.2(基础理论及试验)
2020-06-17(万方平台首次上网日期,不代表论文的发表时间)
共9页
256-264