期刊专题

10.7527/S1000-6893.2016.0196

小型无人机气动参数辨识的新型HGAPSO算法

引用
针对小型无人机(UAVs)研制中操稳特性和飞行控制律设计评估对气动参数辨识的需求,提出了一种混合遗传粒子群优化算法(HGAPSO).该算法以粒子群优化算法(PSO)为主体,在粒子优化路径中,引入遗传算法(GA)的交叉变异操作,增强粒子群跳出局部最优的能力;同时采用Kent映射改进粒子种群的初始化,使初始种群在可行解空间内分布更加均匀,增强全局优化能力.基于仿真结果,依据辨识准度及辨识成功率,对比了HGAPSO、常规PSO和GA优化算法气动参数辨识的结果,然后用蒙特卡洛仿真测试随机观测噪声的影响,结果表明该算法兼备PSO算法高的搜索效率和GA算法的全局优化能力,对随机观测噪声不敏感.最后,通过设计小型UAV试飞示例进行综合应用评价,结果表明:HGAPSO算法基于真实试飞数据进行气动参数辨识取得了满意结果,具有良好的实用性.

小型无人机、气动参数、参数辨识、混合遗传粒子群优化算法(HGAPSO)、搜索效率、全局优化

38

V212.11(基础理论及试验)

国家“863”计划2014AA2157National High-tech Research and Development Program of China 2014AA2157

2017-06-05(万方平台首次上网日期,不代表论文的发表时间)

共11页

44-54

暂无封面信息
查看本期封面目录

航空学报

1000-6893

11-1929/V

38

2017,38(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn