期刊专题

10.7527/S1000-6893.2015.0020

基于S-PSO分类算法的故障诊断方法

引用
将监控数据的已知状态作为先验类别标签,构造出新的有监督的粒子群优化(S-PSO)分类算法,并对设备进行故障诊断.为提高故障诊断的准确率,降低随机性对分类算法的影响,提出了新的基于动态邻域的自适应探测更新(ADU-DN)的干预更新策略来拓展粒子搜索整个解空间的能力,引导粒子自适应地跳出局部最优区域,确保获得全局最优解;同时设计出基于最小类内距离、最大类间距离和训练样本最大分类精度的适应度函数,使得输出的最优类别中心兼顾了这3个因素,增强了分类算法在故障诊断中的通用性和容错性,提高了测试样本的分类精度.S-PSO分类算法有效克服了聚类算法只考虑数据间相似性特征、不考虑数据蕴含的物理意义以及不能很好指导样本分类的缺陷.对GE90发动机孔探图像纹理特征分类进行了对比研究,研究数据表明:S-PSO分类算法表现出了较强的鲁棒性,在故障诊断中的分类精度高于支持向量机(SVM)和常用神经网络模型.

监督的粒子群优化分类算法、动态邻域、自适应探测更新、适应度函数、故障诊断

36

V263.6;TP277(航空制造工艺)

国家自然科学基金民航联合研究基金U1233202;中国民用航空飞行学院青年基金Q2013-049;Joint Fund for Civil Aviation Research of National Natural Science Foundation of ChinaU1233202;Youth Foundation of Civil Aviation Flight University of ChinaQ2013-049

2016-01-14(万方平台首次上网日期,不代表论文的发表时间)

共12页

3640-3651

暂无封面信息
查看本期封面目录

航空学报

1000-6893

11-1929/V

36

2015,36(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn