10.3321/j.issn:1000-6893.2007.06.021
基于置信度加权的组合导航数据融合算法
针对联邦滤波融合算法中由于模型量测噪声统计特性未能被准确描述导致其子滤波器误差变大,进而导致联邦滤波估计出现偏差的问题,为了改进联邦滤波融合方法,将模糊自适应卡尔曼滤波方法和置信度加权方法与联邦滤波融合方法相结合,应用于组合导航系统.该方法首先将模糊自适应卡尔曼滤波方法应用于各子滤波器,使其能够跟踪真实量测噪声统计特性.然后通过模糊方法计算得到各子滤波器的置信度,进而得到联邦滤波器的置信度,再由得到的置信度对各子滤波器及联邦滤波器输出进行加权,得到最终的全局输出.对车载组合导航系统的仿真结果表明,这种算法对量测噪声具有较强的自适应性,能够抑制置信度低的子滤波器在融合系统中所占的权重,提高联邦滤波融合算法的精度,是一种可行的车载组合导航数据融合算法.
组合导航、数据融合、置信度、联邦滤波、GPS/INS/里程计
28
TN967.2
国家高技术研究发展计划863计划2006AA12Z305
2008-01-24(万方平台首次上网日期,不代表论文的发表时间)
共6页
1389-1394