期刊专题

10.3969/j.issn.1671-654X.2019.05.003

基于弹性神经网络的航班延误时间预测

引用
航班延误受到多种因素的交叉影响,导致航班延误数据分布不规律,难以从传统统计学的角度准确预测航班延误时间,因此以减少数据过拟合为目标,利用随机森林特征选择模型筛选21个重要特征,引入正则化L1、L2范数,建立弹性神经网络预测模型,对航班落地延误时间进行预测.预测结果为:±3 min容差内的准确率达到83.954%,±5 min容差内的准确率达到94.431%,结果表明该模型能够提高航班延误预测的准确率.

航班延误预测、随机森林、弹性神经网络、特征选择

49

V355(航空港(站)、机场及其技术管理)

国家自然科学基金项目资助71731001

2020-01-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

12-16

相关文献
评论
暂无封面信息
查看本期封面目录

航空计算技术

1671-654X

61-1276/TP

49

2019,49(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn