期刊专题

10.13224/j.cnki,jasp.20210105

神经网络模型在压气机通流特性分析中的应用

引用
为了解决通流特性分析程序中原始模型对压气机性能预测精度不足的问题,提高压气机通流特性分析过程的可靠性,基于对大量多圆弧叶栅的数值模拟结果建立了压气机叶栅性能数据库,并以该数据库为依托,采用神经网络建模方法建立了压气机叶栅基准损失系数和基准落后角模型.结果显示:两模型对叶栅基准损失系数和基准落后角的预测精度均满足工程应用要求,其精度分别为±0.002和±1°.在对采用神经网络模型的通流特性分析程序校验过程中发现,其无论对压气机整机性能还是对流动细节的预测精度上都获得了显著提高,尤其是在主流区.此外从压气机整体特性上看,基准损失系数和基准落后角精度的提高对非设计工况损失系数和落后角的预测精度影响是积极的.

压气机、通流特性分析、神经网络、损失系数、落后角

37

V231.3(航空发动机(推进系统))

国家自然科学基金51676015

2022-08-02(万方平台首次上网日期,不代表论文的发表时间)

共13页

1260-1272

相关文献
评论
暂无封面信息
查看本期封面目录

航空动力学报

1000-8055

11-2297/V

37

2022,37(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn