期刊专题

10.13224/j.cnki.jasp.20210317

基于改进的SqueezeNet直升机滚动轴承故障诊断

引用
针对现有基于卷积神经网络的故障诊断方法存在模型参数量和计算量大的问题,提出一种改进的SqueezeNet模型应用于直升机滚动轴承故障诊断.该模型借鉴VGG16模型的思想,在经典的SqueezeNet基础上,采用3个3×3卷积核代替1个7×7卷积核,实现了在相同感知野条件下增加网络容量、增强非线性、减少网络参数量,采用卷积层、池化层和Fire模块、池化层两大结构交替的方式组成模型特征提取层,在保障特征提取能力的情况下,进一步减少了网络参数量.通过轴承数据开展模型故障诊断实验,结果表明该模型诊断精度达到99.65%,与传统卷积神经网络及经典的SqueezeNet模型相比诊断精度相当,而计算量与参数量最大缩减约6倍和36倍.

直升机滚动轴承、卷积神经网络、VGG16模型、轻量化、SqueezeNet模型

37

V233+5;TH133.33(航空发动机(推进系统))

国家自然科学基金;航空科学基金;航空科学基金

2022-08-02(万方平台首次上网日期,不代表论文的发表时间)

共9页

1162-1170

相关文献
评论
暂无封面信息
查看本期封面目录

航空动力学报

1000-8055

11-2297/V

37

2022,37(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn