期刊专题

基于神经网络与果蝇优化算法的涡轮叶片低循环疲劳寿命健壮性设计

引用
在对涡轮叶片低循环疲劳寿命概率分析的基础上,将广义回归型神经网络(generalized regression neural network,GRNN)与果蝇优化算法(fruit fly optimization algorithm,FFOA)结合,利用果蝇优化算法的多点全局的快速搜索能力来优化影响疲劳寿命的随机变量,进行涡轮叶片低循环疲劳寿命健壮性优化设计.优化结果表明:疲劳寿命的概率区间减小17.9%,对随机变量的敏感度降低,从而可以更精确地对疲劳寿命进行估计.计算结果验证了该方法在工程应用中的可行性.

涡轮叶片、低循环疲劳、概率寿命、广义回归型神经网络、果蝇优化算法、健壮性

28

V21(基础理论及试验)

2013-07-09(万方平台首次上网日期,不代表论文的发表时间)

共6页

1013-1018

相关文献
评论
暂无封面信息
查看本期封面目录

航空动力学报

1000-8055

11-2297/V

28

2013,28(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn