10.13198∕j.issn.1001-6929.2020.05.25
基于贝叶斯模型的地下水风险源污染概率估计方法研究
我国地下水环境风险源点多面广,但风险源周边地下水监测水平较低,尤其是在单个监测点指标异常时,监测数据异常值的来源及风险源造成污染概率的判定方面存在较大不足.为了解决此类问题,提出了基于贝叶斯模型的地下水风险源污染概率估计方法,并以石家庄市某工业集聚区下游一个农灌井中Cr6+含量和CHCl3含量异常事件为研究案例,计算了指标异常来源于工业集聚区内8个风险源的污染概率.结果表明:①通过结合风险源的建成时间、废水排放量等软数据及对流弥散方程,优化先验概率、似然度以及后验概率求解方法,提出了基于贝叶斯模型的地下水风险源污染概率估计方法.②该工业集聚区下游农灌井中Cr6+含量和CHCl3含量异常事件的案例应用结果显示,Cr6+含量异常来源于S6风险源的后验概率为76.2%,即Cr6+含量异常最有可能由某无机盐制造业污染源造成;CHCl3含量异常来源于S1和S3风险源的后验概率分别为32.7%和23.6%,监测点CHCl3含量异常最有可能由一个或两个化学农药制造业污染源造成.研究显示,建立的地下水风险源污染概率估计方法初步解决了监测数据不足时指标异常的来源识别问题,可用于未开展详细调查前地下水污染来源的快速锁定,也可使后期的地下水污染调查更具有针对性,对地下水污染风险防控具有重要科学意义.
地下水风险源识别、贝叶斯、污染概率
33
X523(水体污染及其防治)
国家水体污染控制与治理科技重大专项 No.2018ZX07109-001
2020-07-10(万方平台首次上网日期,不代表论文的发表时间)
共6页
1322-1327