期刊专题

10.13671/j.hjkxxb.2022.0321

基于机器学习算法对二次无机气溶胶模拟进行偏差订正

引用
采用机器学习算法随机森林结合空气质量模型NAQPMS,利用华北地区模式模拟结果及硫酸盐、硝酸盐和铵盐的观测结果,构建了二次无机气溶胶模拟的偏差订正模型.结果表明:基于随机森林算法融合空气质量模型建立的二次无机气溶胶模拟偏差订正模型可以显著改善二次无机气溶胶的模拟效果,更细致地再现出二次无机气溶胶的时空分布特征.对于训练站点,硫酸盐、硝酸盐和铵盐的模拟偏差可降低89.6%、16.7%和98.0%;对于验证站点,硫酸盐、硝酸盐和铵盐的模拟偏差可降低68.3%、60.0%和81.3%,相关系数均有显著提高.特征因子敏感性试验表明,硫酸盐、硝酸盐和铵盐的模拟浓度是构建二次无机气溶胶模拟的偏差订正模型的重要特征因子,潜在地考虑了二次无机气溶胶物理化学生成过程.本文揭示了融合了深度学习方法和传统数值模式方法在改善区域二次无机气溶胶模拟上的巨大潜力.

二次无机气溶胶、数值模拟、随机森林

43

X51(大气污染及其防治)

国家自然科学基金;国家自然科学基金;国家自然科学基金;湖北省生态环境厅省级环保科研项目;中国科学院网信专项

2023-05-26(万方平台首次上网日期,不代表论文的发表时间)

共10页

121-130

暂无封面信息
查看本期封面目录

环境科学学报

0253-2468

11-1843/X

43

2023,43(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn