基于随机森林的光散射法传感器微站PM2.5监测值的校正方法研究
光散射法传感器微站以其体积小、反应迅速、成本低等优点,已成为城市PM2.5规模化移动监测的新选择.由于其标准与传统标准台站不同,必须对这类微站的监测数据进行准确地校正.本研究利用2021年06月—2022年02月武汉市江夏区标准台站及同期传感器微站监测数据,探讨传感器微站监测误差与温度、相对湿度的关系,并通过随机森林回归(Random Forest Regressor,RFR)校正传感器微站PM2.5监测数据.对比单一 RFR模型、按气象因素分类后RFR模型、"小波去噪+RFR"组合模型、"加权滑动平均去噪+RFR"组合模型校正效果,结果表明:RFR模型和分类后RFR模型均出现泛化能力差的问题,不能满足校正需求;"小波去噪+RFR"组合模型、"加权滑动平均去噪+RFR"组合模型平均绝对误差分别为8.77μg·m-3和4.78μg·m-3,平均相对误差分别为40.80%和18.13%.去噪组合模型能满足校正需求,且"加权滑动平均+RFR"组合模型校正效果明显优于"小波去噪+RFR"组合模型.研究结果可为光散射法传感器微站PM2.5监测值校正提供有益参考.
PM2.5、数据校正、光散射法、随机森林、去噪
42
X513(大气污染及其防治)
湖北省重点研发计划项目;中国科学院精密测量科学与技术创新研究院多学科交叉培育项目
2023-01-03(万方平台首次上网日期,不代表论文的发表时间)
共9页
330-338