期刊专题

10.13671/j.hjkxxb.2022.0187

基于随机森林的光散射法传感器微站PM2.5监测值的校正方法研究

引用
光散射法传感器微站以其体积小、反应迅速、成本低等优点,已成为城市PM2.5规模化移动监测的新选择.由于其标准与传统标准台站不同,必须对这类微站的监测数据进行准确地校正.本研究利用2021年06月—2022年02月武汉市江夏区标准台站及同期传感器微站监测数据,探讨传感器微站监测误差与温度、相对湿度的关系,并通过随机森林回归(Random Forest Regressor,RFR)校正传感器微站PM2.5监测数据.对比单一 RFR模型、按气象因素分类后RFR模型、"小波去噪+RFR"组合模型、"加权滑动平均去噪+RFR"组合模型校正效果,结果表明:RFR模型和分类后RFR模型均出现泛化能力差的问题,不能满足校正需求;"小波去噪+RFR"组合模型、"加权滑动平均去噪+RFR"组合模型平均绝对误差分别为8.77μg·m-3和4.78μg·m-3,平均相对误差分别为40.80%和18.13%.去噪组合模型能满足校正需求,且"加权滑动平均+RFR"组合模型校正效果明显优于"小波去噪+RFR"组合模型.研究结果可为光散射法传感器微站PM2.5监测值校正提供有益参考.

PM2.5、数据校正、光散射法、随机森林、去噪

42

X513(大气污染及其防治)

湖北省重点研发计划项目;中国科学院精密测量科学与技术创新研究院多学科交叉培育项目

2023-01-03(万方平台首次上网日期,不代表论文的发表时间)

共9页

330-338

暂无封面信息
查看本期封面目录

环境科学学报

0253-2468

11-1843/X

42

2022,42(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn