一种基于卷积神经网络的源解析因子识别方法
为解决源解析因子识别过程中人为参与及判定过程复杂的问题,提高源解析因子识别工作的效率,提出基于卷积神经网络(CNN)的源解析因子识别方法.通过文献调研,构造可供CNN模型训练的因子识别数据集,对因子识别模型进行训练与调试,并以北京市南部采样点的PM2.5组分观测数据对模型进行验证.同时,利用正定矩阵分解模型(PMF)解析得到不同因子数时的源谱矩阵,输入因子识别模型并与人工分析比对.结果表明,9个因子时模型的识别效果最佳,可以实现既无重复识别又无"无法判定"的情况,与源解析因子人工识别结果吻合,证明了所提出方法的合理性与可行性.该方法不仅对源解析中因子识别问题具有一定的实用价值,同时对减排策略的制定与动态调整也具有积极意义.
源解析、正定矩阵分解(PMF)、卷积神经网络(CNN)、PM2.5
42
X16;X32(环境气象学)
国家重点研发计划;国家重点研发计划
2022-09-19(万方平台首次上网日期,不代表论文的发表时间)
共10页
117-126