基于XGBoost算法的近地面臭氧浓度遥感估算
本文采用XGBoost机器学习算法,融合臭氧浓度地面监测数据、欧洲中期天气预报中心的ERA5数据集、中国多尺度排放清单模型构建的排放清单数据集、高分辨率遥感影像(TROPOMI_NO2、OMI_NO2)以及人口数据和DEM数据,构建训练估算数据集,开展近地面臭氧浓度估算研究.模型构建采用递归式特征消除法进行特征变量的选择,并对其进行十折交叉和自建模验证,R2分别为0.871和0.955,RMSE分别为12.8μg·m-3和7.514 μg·m.3.同时进行了高分辨率遥感影像对估算结果的贡献分析,结果表明引入TROPOMI_NO2因子参与建模可校正近地面臭氧浓度普遍被低估现象.模型模拟结果显示臭氧浓度回归估算结果层次更加分明、条带现象消失、连续性和平滑性明显改善.
近地面臭氧、XGBoost、TROPOMI、OMI、时空分布
42
X51(大气污染及其防治)
国家重点研发科技专项;福建省科技计划项目
2022-06-24(万方平台首次上网日期,不代表论文的发表时间)
共14页
95-108