期刊专题

10.13671/j.hjkxxb.2021.0092

基于时空XGBoost的中国区域PM2.5浓度遥感反演

引用
为了提高PM2.5估算精度,获得连续的PM2.5浓度空间分布,本文提出了一种时空XGBoost模型(STXGB).STXGB模型引入克里金法,将地理信息和时间信息融合到XGBoost算法体系中,通过集成遥感数据、气象数据和地理信息数据建立了基于STXGB模型的PM2.5质量浓度空间估算方法.最后,以2019年中国区域PM2.5质量浓度月数据为例,采用基于样本、站点和时间的十折交叉验证法,评估了STXGB模型的性能,并与BP神经网络(BPNN)、随机森林(RF)、XGBoost、反距离加权XGBoost(XGBIDW)模型结果进行对比.结果 表明,STXGB模型的预测精度优于其它模型,其中,STXGB模型验证的决定系数为0.92,均方根误差为6.51 μg·m-3,平均预测误差为4.26 μg· m-3,利用该模型生成的中国区域PM25浓度空间分布更为合理.

PM2.5;遥感反演;机器学习;时空XGBoost模型(STXGB)

41

X513(大气污染及其防治)

山东省自然科学基金项目;山东省高等学校青创科技支持计划

2021-11-12(万方平台首次上网日期,不代表论文的发表时间)

共10页

4228-4237

暂无封面信息
查看本期封面目录

环境科学学报

0253-2468

11-1843/X

41

2021,41(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn