基于远程在线监控车载终端的柴油车NOx排放等级诊断研究
远程在线监控车载终端集成了远程通讯模块、卫星定位模块、发动机OBD信息解析模块,能够实时读取车辆排放相关运行信息,但无法直接判断车辆NOx排放情况.为了快速、准确地评估车辆排放情况,诊断和监测NOx高排放车,同时为了克服有些重型柴油车监测数据中缺失进气流量、燃油流量、车速等重要的实时信息,无法计算出车辆NOx排放因子的问题.本文提出了由NOx浓度分布特征驱动的高排放重型柴油车识别算法,通过远程在线监控车载终端设备获取车辆的发动机信息和SCR系统运行信息,运用NOx浓度分布计算车辆每天NOx排放浓度占比,通过系统聚类法对车辆NOx排放浓度占比进行聚类,结果聚为优、良、中、差4类.利用车辆NOx排放浓度区间分布及其聚类结果分别作为训练集的输入和输出,选择BP神经网络作为训练算法,训练获得的模型分类准确率为90%,利用训练好的模型判断在用柴油车NOx排放等级,从而识别及监测NOx高排放车辆.研究结果可为柴油车NOx高排放诊断及监测提供依据,有助于监管部门能够快速识别NOx高排放车辆.
远程在线监控、柴油车、NOx、浓度分布、聚类法、BP神经网络
41
X511;X83(大气污染及其防治)
国家重点研发计划;国家自然科学基金;上海市科委项目;上海市生态环境局项目
2021-07-07(万方平台首次上网日期,不代表论文的发表时间)
共11页
2329-2339