ECMWF气象场驱动长三角PM2.5预报与最优集成
采用华东区域大气环境数值预报业务系统(RAEMS-GFS)的整体框架和欧洲中期天气预报中心(ECMWF)高分辨率数值天气预报数据,建立了ECMWF气象场驱动的区域空气质量数值预报系统(RAEMS-EC).评估结果显示:RAEMS-EC对2019年秋冬季长三角城市PM2.5浓度和污染程度具有良好的预报准确性,其性能与RAEMS-GFS具有高度可比性的同时也存在一定的差异,数值上则有较明显的系统性偏高.RAEMS-EC与RAEMS-GFS双模式最优集成预报(OCF)可以大幅提升预报效果,长三角各城市PM2.5浓度总体预报效果指标提升12%~83%,各指标在80%以上城市为正效果,PM2.5污染预报TS评分也得到明显提升(14%),OCF基本消除了数值预报系统性偏高的不足.
PM2.5;ECMWF;数值预报;最优集成预报;WRF-Chem;长三角
41
X16;X51(环境气象学)
国家重点研发计划;上海市科技计划项目
2021-06-07(万方平台首次上网日期,不代表论文的发表时间)
共9页
1656-1664