多模式集成方法在安徽地区PM2.5预报中的应用研究
分别采用算术平均、权重平均、多元线性回归和神经网络的集成方法,对3种空气质量模式在安徽地区2017年2月-2018年2月PM2.5预报结果进行集成释用.结果表明:各模式和订正产品的预报值与实况值之间均能达到显著相关,相较于WRF-Chem,多元线性回归的均方根误差(RMSE)下降了21.7%,归一化平均偏差(NMB)下降了6%,且在16个地市中NMB均下降至-25% ~25%之间;从不同时次的预报效果来看,在3个代表性城市(淮北、合肥和芜湖),多元线性回归均能大幅度降低RMSE和NMB,但从时间和空间效果来看,其对于提升预报值与实况值之间的相关性方面,略差于权重平均的集成方法;多元线性回归方法对于重污染天气PM2.5预报评分(TS)最高,为0.46.该方法能较为有效地提升不同模式的预报效果,可为重污染天气预报预警提供参考.
集成预报、安徽、空气质量模式、多元回归
41
X16;X823(环境气象学)
安徽省气象局科技发展基金;国家自然科学基金青年基金;安徽省公益性研究联动计划项目
2021-04-20(万方平台首次上网日期,不代表论文的发表时间)
共11页
806-816