基于机器学习的成渝地区空气质量数值预报PM2.5订正方法研究
空气质量预报对于大气污染防治、打赢蓝天保卫战意义重大.本研究基于重庆市气象局的中尺度天气模式(WRF)和空气质量数值预报模式(CMAQ)的预报产品,采用2018年4个代表月份(1、4、7、10月,分别代表冬、春、夏和秋季)成渝地区22个观测站点的PM2.5浓度和气象要素观测数据,建立基础特征变量数据集(包括训练数据集和测试数据集),通过调整模型参数,并利用训练数据集采用机器学习方法(Lasso回归、随机森林回归、深度学习RNN-LSTM)进行模型训练,订正了成渝地区PM2.5数值预报.其中,通过Lasso回归算法对成渝地区4个区域分别进行变量优选,优化模型,利用测试数据集对模型进行测试并检验评估.结果表明,基于3种机器学习方法订正后的PM2.5小时浓度相比CMAQ模式模拟预报结果,偏差显著降低,相关系数显著提高.其中,随机森林回归和RNN-LSTM的订正效果优于Lasso回归,区域统计与站点统计结果较为一致;Lasso回归订正后的均方根误差减小50%左右,相关系数达70%,随机森林回归和RNN-LSTM订正后的均方根误差减小70%左右,相关系数达90%,随机森林回归与RNN-LSTM订正后的偏差范围相比Lasso回归集中范围更窄,最大概率分布更集中;3种方法对不同季节的订正效果与全年一致,其中,冬季订正效果更为显著.研究结果可为提高我国重点城市群区域一成渝地区PM2.5浓度的大气污染预报能力提供有益参考.
成渝地区、机器学习、WRF-CMAQ模式、PM2.5浓度、空气质量数值预报
40
X513(大气污染及其防治)
国家重点研发计划;重庆市气象局开放式研究基金项目;重庆市气象局创新团队项目;重庆市科委技术创新与应用示范项目;中央高校基本科研业务费专项资金资助项目
2021-02-02(万方平台首次上网日期,不代表论文的发表时间)
共13页
4419-4431