基于自组织映射与随机森林耦合模型的流域水质空间差异性评估
流域水环境质量空间分布特征分析是推进流域精细化管理的基础.本研究基于流域特征指标与水质的关联性,以子流域为分析单元,利用自组织映射人工神经网络模型(SOM)对苕溪流域水质数据聚类分析为3类后与随机森林模型(RF)进行耦合,对全流域水质进行了空间差异性评估.研究结果显示,上游山地区域水质较好,而平原河网人口集聚区的CODMn、NH3-N及TP浓度较高,山地与平原过渡地带水质则主要受到CODMn和TN的影响.采用自然环境、社会经济及土地利用/覆盖指标作为流域特征进行水质分级模式识别,SOM与RF模型耦合模型的准确率稳定在80%左右;在对强相关性特征进行筛选识别后,将蒸发蒸腾量、坡度、人口密度、大于10℃积温、旱地占比、城镇用地占比及景观多样性指数为作为输入特征,准确率可达83%,可以有效地开展全流域水质分级评估.
水质评估、机器学习、模式识别、自组织映射人工神经网络模型(SOM)、随机森林模型(RF)
40
X32(环境规划与环境管理)
国家水体污染控制与治理科技重大专项No.2018ZX07208-009
2020-07-10(万方平台首次上网日期,不代表论文的发表时间)
共8页
2278-2285