基于AOD数据与GWR模型的2016年新疆地区PM2.5和PM10时空分布特征
PM2.5与PM10的时空分布特征及其相关性是大气颗粒物研究的主要内容,传统方法是基于监测站点数据进行分析,难以揭示PM2.5与PM10时空分布的区域特征.为此,本文利用地理加权回归模型估算了2016年新疆地区PM2.5与PM10的月均浓度,在此基础上对区域尺度的PM2.5与PM10浓度特征进行分析.结果表明:地理加权回归相较最小二乘回归的拟合精度更高,PM2.5和PM10的决定系数分别为0.93和0.96,且误差较小;PM2.5和PM10年均浓度分别为70.88 μg· m-3和194.53 μg·m-3,说明大气颗粒物污染严重,且空间分布呈西南高、东北低的特征;PM2.5和PM t0季节浓度均为春季最高,夏季最低;PM2.5月均浓度2月最高,9月最低,PM10月均浓度3月最高,8月最低;PM2.5与PM10年均浓度的相关系数r为0.95,相关性较高;PM2.5/PM10冬季最高为51%,其余季节小于50%,说明冬季PM2.5对大气颗粒物污染贡献率较高,其余季节则以可吸入颗粒物中的粗颗粒贡献为主.
PM2.5、PM10、新疆、时空分布、地理加权回归模型
40
X513(大气污染及其防治)
国家重点研发计划青年项目;天津市科技计划项目;天津市自然科学基金项目
2020-04-29(万方平台首次上网日期,不代表论文的发表时间)
共9页
27-35