基于贝叶斯优化的三维水动力-水质模型参数估值方法
随着水质目标管理要求的提升,基于复杂的三维水动力-水质模型的决策成为流域精准治理的必需.水质模型通常具有复杂的结构,包含大量的方程和参数,而参数取值的准确性会影响模型对水体系统表征的可靠性,进而影响根据模型结果进行水环境管理的效果,因此,有必要探究适用于复杂水质模型的高效参数估值方法.传统的自动参数估值方法应用于复杂的水质模型时会面临计算瓶颈,而贝叶斯优化适用于高运算成本模型的优化问题.本研究提出基于贝叶斯优化的复杂水质模型参数估值方法,主要包括:①重要影响参数识别;②重要参数敏感性排序与筛选;③采用贝叶斯优化对筛选出的参数进行估值;④方法的适用性评估.同时,将该方法应用于云南异龙湖的三维水动力-水质模型的参数估值中,发现进行参数估值后模型lg(NSE)均大于0.65,表明模型达到了满意的级别.研究表明,当贝叶斯优化算法的采集函数为EI时,仅需要141次迭代lg(NSE)即可达到0.766,该方法对复杂水质模型的参数估值具有一定的借鉴意义.
水质模型、参数估值、贝叶斯优化、高斯过程、采集函数
39
X32(环境规划与环境管理)
云南省科技厅科技计划重点研发项目2018BC001
2019-07-15(万方平台首次上网日期,不代表论文的发表时间)
共9页
2024-2032