基于多源辅助数据和神经网络模型的稻田土壤砷空间分布预测
合适的方法和多源的辅助数据对于准确预测土壤重金属的空间分布具有重要意义.该研究提出一种径向基函数神经网络结合普通克里格法的模型(RBFNN_OK),由主成分分析(PCA)提取的地形因子、遥感数据和邻近信息等多源辅助数据作为自变量,预测江西省都昌县稻田土壤砷空间分布.为验证RBFNN_OK的可行性:首先在全县范围内采集144个稻田表层(0~20 cm)土壤样品,运用ArcGIS地统计模块随机抽取115个(80%)采样点作为测试集,29个(20%)采样点作为验证集.其次多源辅助数据包括地形因子、遥感数据和邻近信息等14个定量因子作为预测变量,将预测变量进行主成分分析,得到前10个主成分的累积贡献率达到97.62%.再次一个特定的RBFNN_ OK被用来预测土壤砷空间分布.最后将RBFNN_OK模型的预测结果与径向基神经网络模型(RBFNN)、回归克里格模型(RK)和多元逐步线性回归模型(MSLR)进行比较.结果表明,RBFNN_OK的测量值标准偏差与均方根误差的比值(RPD)较其它3种方法分别提高了14.92%、35.71%和44.67%.此外,RBFNN_OK还提供了更加真实且有关土壤砷空间分布的细节信息.RBFNN_OK取得最优效果可能归因于引入多源辅助数据,考虑多源辅助数据和土壤砷之间的多重共线性和非线性关系.该方法可为稻田土壤砷调查与环境保护提供更为精准的信息.
稻田土壤、径向基神经网络模型、砷污染、多源数据、主成分分析
39
X53(土壤污染及其防治)
国家重点研发项目2017YFD0301603
2019-04-19(万方平台首次上网日期,不代表论文的发表时间)
共11页
928-938