期刊专题

10.13671/j.hjkxxb.2014.0744

基于改进的PSO优化LSSVM参数的松花江哈尔滨段悬浮物的遥感反演

引用
悬浮物是松花江水质和水环境评价的重要参数之一.利用在松花江哈尔滨段江面上29个采样点的实测高光谱和悬浮物浓度数据,用20个采样点数据为训练集,9个采样点数据为测试集.将机器学习和全局优化智能计算方法引入,应用改进的粒子群(PSO)优化最小二乘支持向量机(LSSVM)参数,以均方根误差RMSE为适应度函数,根据迭代得到LSSVM最优参数值,用700 nm和750 nm光谱反射率比值(R700/R750)为特征变量,悬浮物数据为目标变量,用训练集数据训练得到反演模型,使用测试集数据进行验证.结果表明,此模型收敛速度快,精度高,得到预测值的均方根误差RMSE为10.11 mg·L-1,平均绝对百分误差MAPE为10.72%,模型决定系数R2为0.952,该方法可用来对其它水质参数反演预测提供参照.

粒子群优化算法、最小二乘支持向量机、悬浮物、遥感反演、松花江

34

X824(环境质量分析与评价)

2014-08-26(万方平台首次上网日期,不代表论文的发表时间)

2148-2156

暂无封面信息
查看本期封面目录

环境科学学报

0250-3301

11-1895/X

34

2014,34(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn