期刊专题

10.7524/j.issn.0254-6108.2022110302

基于BPNN的一江两河流域水体中重金属浓度预测

引用
本文将反向传播神经网络(BPNN)应用于青藏高原一江两河流域(雅鲁藏布江山南段、拉萨河、年楚河)水体中重金属浓度预测,探讨了输入变量、预测因子、隐藏层节点数和模型结构的影响.模型以溶解氧(DO)、pH、电导率(EC)、总磷(TP)、铁(Fe)作为网络的输入层,重金属砷(As)、锑(Sb)、钼(Mo)、锰(Mn)的含量作为网络的输出层,使用Levenberg-Marquardt(LM)算法进行训练.其中,BPNN隐藏层的传递函数为tansig,隐藏层节点数为9,输出层的传递函数为purelin,输出层节点数为4.结果表明:(1)以单个元素作为预测因子时,As、Sb、Mo、Mn预测值和实测值的决定系数(R2)分别为0.98、0.933、0.894、0.928;均方根误差(RMSE)分别为:9.7168×10-4、1.2508×10-4、3.3159×107、1.9188×10-3.(2)以4个元素作为预测因子时,预测值和实测值的决定系数(R2)为0.888;均方根误差(RMSE)为2.1766×10-3.R2值越高,RMSE值越低,表明实测值和预测值拟合程度和适应性良好,证明BPNN能较好地应用于青藏高原一江两河流域水体中重金属浓度预测.

反向传播神经网络(BPNN)、一江两河流域、重金属、青藏高原

42

TP183;TP391.41;TN2

次青藏高原综合科学考察研究项目;国家自然科学基金;西藏自治区科技厅中央引导地方项目;环境化学与生态毒理学国家重点实验室开放基金

2023-06-01(万方平台首次上网日期,不代表论文的发表时间)

共11页

1612-1622

相关文献
评论
暂无封面信息
查看本期封面目录

环境化学

0254-6108

11-1844/X

42

2023,42(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn