期刊专题

10.11949/0438-1157.20190184

近临界区CO2物性预测模型对比与修正

引用
超临界二氧化碳(SCO2)布雷顿循环系统是未来极具潜力的发电能量转换系统,CO2物性表征模型对布雷顿循环系统中动力设备转轴密封和轴承性能的预测精度影响显著.在总结权威文献中不同温度和压力下CO2物性实验测试数据的基础上,对比分析了经典物性查询软件REFPROP软件中CO2密度、黏度和热导率预测模型的预测精度,获得了预测精度最高的物性预测模型及对应临界点附近误差较大的区域,采用人工神经网络算法获得了近临界区预测精度更高的CO2物性预测模型.结果表明:REFPROP软件中的FEK模型、VS1模型和TC1模型分别对CO2的密度、黏度和热导率具有最高的预测精度,不过其在近临界区的物性预测最大和平均误差仍分别达到40%和8%以上,利用神经网络算法所获得的CO2物性预测模型可使近临界点区的物性预测最大和平均误差分别降至30%和4%以下.

二氧化碳、REFPROP软件、物性表征模型、神经网络、近临界区

70

TH117.2

国家自然科学基金项目51705458,51575490,51605436;浙江省自然科学基金项目LQ17E050008,LY18E050026

2019-09-04(万方平台首次上网日期,不代表论文的发表时间)

共13页

3058-3070

相关文献
评论
暂无封面信息
查看本期封面目录

化工学报

0438-1157

11-1946/TQ

70

2019,70(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn