期刊专题

基于小波核聚类的非高斯过程故障检测方法

引用
针对工业过程检测变量具有的非线性和非高斯性等特点,提出了一种基于小波核聚类的核主元分析(WKPCA)方法来处理过程数据的非线性特性,同时引用支持向量数据描述(SVDD)对过程进行建模.本算法先根据Morlet小波具有多分辨分析和能以更高的精度逼近任意函数的特点,将其构建为小波核函数,可以增强KPCA的非线性核映射和抗噪能力,然后在映射后的特征空间中进行均值聚类分析,选择每个聚类中展现特征中心的数据,大大减少了核函数的计算量;最后通过SVDD提出监控指标来描述过程的非高斯特性.将上述方法用在一个标准仿真平台Tennessee-Eastman上,结果表明,该方法能及时有效地检测出系统产生的故障和异常情况.

均值聚类、小波核、故障检测

62

TP277(自动化技术及设备)

国家自然科学基金项目60625302,20876044;国家重点基础研究发展计划项目2009CB320603;上海市重点学科建设项目B504;上海市科技启明星项目08QA14021

2012-02-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

427-432

相关文献
评论
暂无封面信息
查看本期封面目录

化工学报

0438-1157

11-1946/TQ

62

2011,62(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn