期刊专题

10.3321/j.issn:0438-1157.2006.09.029

基于径向基函数网络的MH/Ni电池荷电状态预测

引用
电动车电池管理系统的核心任务是对电池荷电状态(SOC)进行预测.在分析了MH/Ni电池充放电反应机理的基础上,应用径向基函数(RBF)神经网络建立了预测MH/Ni电池荷电状态的模型,并且应用该模型对电池放电过程中某一状态下的荷电状态进行预测.该模型预测速度快,并且预测值与试验值吻合.人工神经网络建模技术简单直观,是预测MH/Ni电池SOC有力工具.

荷电状态、径向基函数、神经网络、MH/Ni电池

57

TM91

2006-10-23(万方平台首次上网日期,不代表论文的发表时间)

共5页

2162-2166

暂无封面信息
查看本期封面目录

化工学报

0438-1157

11-1946/TQ

57

2006,57(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn