基于PROSAIL模型和遗传算法优化的BP神经网络模型的不同大豆种群叶面积指数反演比较
以大豆叶面积指数(Leaf area index,LAI)反演为研究目标,利用PROSAIL模型和遗传算法优化后的BP神经网络模型,分别对重组自交系(Recombinant Inbred Lines,RIL)和自然野生大豆种群的LAI进行反演.结果表明,在对人工定向培育的RIL大豆种群冠层叶片LAI反演中,PROSAIL模型表现出了更优异的反演能力,而对品种繁多的自然野生大豆种群LAI反演中,遗传算法优化后的BP神经网络模型表现出了更好的适用性,并且上述2种模型在始粒期(R5)时性能最佳,PROSAIL模型和遗传算法优化后的BP神经网络模型R2分别为0.89和0.85,RMSE分别为0.11和0.13,EA均为97%,典型生育期内的反演性能均优于全生育期综合反演性能.因此,针对同一农作物不同种群的表型特征反演,需要根据研究对象的特征来选择合适的模型,以便于精确的估测大豆长势情况,为农作物的规模化育种监测提供数据支持.
叶面积指数;反演;BP神经网络;遗传算法;PROSAIL模型
55
S529;S3(豆类作物)
河南省重点研发与推广专项科技攻关项目192102310273
2021-11-22(万方平台首次上网日期,不代表论文的发表时间)
共9页
698-706