期刊专题

10.15938/j.jhust.2023.01.007

联合损失下深度可分离残差网络的表情识别算法

引用
为了增强神经网络特征提取能力进一步提高人脸表情识别准确率,提出了一种联合损失下深度可分离残差网络模型DSResNet-JLoss(deeply separable residual network under joint loss),该网络是基于深度可分离卷积与残差学习方法的轻量级网络模型.使用逐通道卷积和逐点卷积的方法取代常规卷积运算,解决了传统卷积神经网络参数冗余大,训练时间长收敛慢,且易过拟合的问题.并在网络中加入残差单元,使用shortcut连接,通过恒等映射,来解决因网络模型层数过多导致的梯度爆炸或衰减问题.提出联合损失函数,充分结合了交叉熵损失,中心损失和对比损失的优点,以减小表情特征的类内距离,增大类间距离.实验表明,该模型在FERPlus和RAF-DB两个公开数据集上均取得较好的成绩,表现出良好的泛化能力和鲁棒性.

深度可分离卷积、残差网络、表情识别、联合损失

28

TP391.4(计算技术、计算机技术)

国家自然科学基金;黑龙江自然科学基金项目

2023-06-06(万方平台首次上网日期,不代表论文的发表时间)

共10页

54-63

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

28

2023,28(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn