期刊专题

融合并行网络特征的人脸表情识别算法

引用
针对单一卷积神经网络对人脸表情特征提取不充分和参数量较大等问题,提出了一种融合并行网络特征的人脸表情识别算法.该算法首先对ResNet网络中的残差块进行修改,减少网络参数量同时使用预激活来减小错误率.之后将改进后的ResNet网络提取到的特征与剪层后的VGG网络提取到的特征进行融合,得到网络模型P-ResNet-VGG,其中损失函数使用交叉熵损失函数.该模型已在FER2013和JAFFE数据集上进行了大量实验.实验结果表明,该模型比其他几种模型在FER2013和JAFFE表情数据集上准确率都有所提高,具有更好的鲁棒性.

深度学习、卷积神经网络、人脸表情识别、并行网络、特征融合

27

TP391.4(计算技术、计算机技术)

国家自然科学基金;黑龙江自然科学基金项目

2023-03-08(万方平台首次上网日期,不代表论文的发表时间)

共8页

95-102

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

27

2022,27(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn