多分支主干监督网络下的RGB-D图像显著性检测
针对现有的RGB-D图像显著性检测技术难以充分挖掘深度图像的有效信息,无法使RGB特征和深度特征有效融合的问题,提出了一种多分支主干监督网络下的RGB-D图像显著性检测方法.基于Resnet50网络获得两种图像的各层特征,利用深度改进模块从通道和空间注意力的角度提取到有用的深度特征信息.利用特征分组监督融合模块,依据卷积神经网络的理论,对RGB和深度特征从高层到底层分组进行多尺度多模态特征融合,每组融合加入上层融合结果和真值图进行监督,最终迭代得到预测显著图.通过4个具有代表性数据集上进行的实验,对比目前先进的RGB-D图像显著性检测,表明此模型平均绝对误差指标最小,在F值、E值和S值指标上均有提高,性能优于其他模型,具有良好的鲁棒性.
RGB-D图像显著性检测、多分支主干监督网络、神经网络、注意力机制、多模态融合
27
TP391(计算技术、计算机技术)
国家自然科学基金61502124
2022-09-30(万方平台首次上网日期,不代表论文的发表时间)
共7页
39-45