期刊专题

10.15938/j.jhust.2022.02.011

融合ReFPN结构与混合注意力的小目标检测算法

引用
基于深度学习的小目标检测研究对于如小人脸识别、遥感图像检测等任务的优化与提升都具有极为重要的意义.但由于图像中的小目标所占像素较少,分辨率低,包含的特征信息不明显,现有方法对小目标的检测效果并不理想.针对此问题,提出一种基于反馈的特征融合网络ReFPN用于YOLOv4算法,两次利用骨干网络提取的原始特征层,加强小目标特征信息,对其进行更精确的位置回归.同时提出混合注意力机制Co-AM充分提取小目标的细节特征信息,抑制无效特征,进一步提高小目标的检测精度.实验结果表明,此文提出的方法使YOLOv4算法在MS CO-CO数据集上平均精度AP提高了1.9%,小目标平均精度APS提高了3.3%,检测效果优于现有小目标检测算法,证明了此文提出方法的有效性.

深度学习、小目标检测、特征融合、注意力机制

27

TP751.1(遥感技术)

黑龙江省自然科学基金;中央高校基本科研业务费专项

2022-06-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

85-91

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

27

2022,27(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn