期刊专题

10.15938/j.jhust.2021.04.019

基于集成卷积神经网络的LiDAR数据分类

引用
针对人工设计的中低层特征难以对LiDAR数据进行高精度分类以及泛化性能较低等问题,提出了一种基于集成卷积神经网络的LiDAR数据分类方法.它是基于深度学习模型与随机子空间的集成学习框架.通过有放回的随机抽取LiDAR训练集构成子集,以深度卷积神经网络模型为单个子分类器,最后采用多数投票法确定最终样本的类别,以获得更好的分类精度.实验结果表明,所提方法在Bayview Park和Houston两个数据集上分别取得了93.31%和80.95%的总体分类精度,与其他3种分类算法相比具有更好的分类效果,由此证明该网络在拥有较高分类精度的同时还具有良好的泛化能力.

LiDAR、图像分类、深度学习、卷积神经网络、集成学习

26

TP391(计算技术、计算机技术)

国家自然科学基金61671190

2021-09-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

138-145

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

26

2021,26(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn