期刊专题

10.15938/j.jhust.2021.03.016

基于深度堆栈网络的心电信号识别

引用
传统的心电信号识别算法依靠心电专家参与特征识别,费时费力,诊断成本高,心电信号形态复杂多样导致识别准确率低、适应性差.为解决上述问题,将栈式稀疏自编码器(SSAE,Stacked Sparse Autoencoder),与Softmax分类器相结合形成深度堆栈网络(DSN,Deep Stacked Net-work)完成对心电信号的自动识别.通过3个稀疏自编码器堆叠的方式完成心电信号特征提取,逐层刻画心电信号的高维特征,由Softmax分类器完成心电信号识别.详细评估了深度堆栈网络的模型特性,确定了该网络模型的超参数,训练集样本和测试集样本源于MIT-BIH数据库.实验结果表明采用本文所提方法对心电信号进行识别,总识别率达到99.69%,验证了所提方法的有效性.

栈式稀疏自编码器;特征提取;心电信号识别;稀疏参数

26

TP183(自动化基础理论)

四川省应用基础研究项目2017JY0009

2021-08-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

108-114

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

26

2021,26(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn