期刊专题

10.15938/j.jhust.2020.01.017

基于BLSTM-CNN-CRF的中文命名实体识别方法

引用
传统的命名实体识别方法依赖大量的人工选择的特征和专业领域的外部知识,针对这一问题,提出了一种新颖的神经网络结构,该算法结合了双向LSTM,CNN和CRF可以同时自动获取到基于字符级别和词语级别的表示,是一种真正意义上的端到端的结构,不再需要人工选择特征和数据的预处理,可以应用到各个领域的命名实体识别任务中去.最后,通过实验证明该算法在医疗领域和新闻领域的F1值分别达到了90.97%和92.19%.

命名实体识别、长短期记忆网络、卷积神经网络、条件随机场

25

TP391.1(计算技术、计算机技术)

国家自然科学基金61300115

2020-05-28(万方平台首次上网日期,不代表论文的发表时间)

共6页

115-120

暂无封面信息
查看本期封面目录

哈尔滨理工大学学报

1007-2683

23-1404/N

25

2020,25(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn